
Title: Automated classification of intramedullary spinal cord tumors and inflammatory 

demyelinating lesions using deep learning 

 

Running title: Deep learning classification of spinal cord lesions  

Manuscript type: AI in Brief 

 

Summary Statement 

A deep learning pipeline for segmentation and classification of spinal cord lesions was 

established to support an accurate radiological diagnosis, which sometimes 

outperforms experienced neuroradiologists. 

 

Key Points 

Dice scores of 0.77, 0.80, 0.50 and 0.58 were obtained based on the segmentation of 

spinal cord lesions for astrocytoma, ependymoma, multiple sclerosis and neuromyelitis 

optica spectrum disorders (NMOSD), respectively, against manual labels. 

 

Accuracies of 96%, 82% and 79% were obtained for the classifications of tumor vs. 

demyelinating lesion, astrocytoma vs. ependymoma, and multiple sclerosis vs. 

NMOSD, respectively. 

 

In radiologically difficult cases, an accuracy of 79-95% was still achieved by the 

classifier.  



Abstract 

Accurate and robust differentiation of intramedullary spinal cord tumors and 

inflammatory demyelinating lesions and their subtypes are warranted, since they have 

overlapping MRI characteristics but different treatments and prognosis. We aimed to 

develop a pipeline for spinal cord lesion segmentation and classification using 2D 

MultiResUNet and DenseNet121 networks based on T2-weighted images. A 

retrospective cohort of 490 patients (118 astrocytoma, 130 ependymoma, 101 multiple 

sclerosis (MS) and 141 neuromyelitis optica spectrum disorders (NMOSD)) was used 

for model development, and an additional prospective cohort of 157 patients (34 

astrocytoma, 45 ependymoma, 33 MS and 45 NMOSD) was used for model testing. In 

the test cohort, dice scores of 0.77, 0.80, 0.50 and 0.58 were obtained based on the 

segmentation of spinal cord lesions for astrocytoma, ependymoma, MS and NMOSD, 

respectively, against manual labels. Accuracies of 96% (area under the curve 

(AUC)=0.99), 82% (AUC=0.90) and 79% (AUC=0.85) were achieved for the 

classifications of tumor vs. demyelinating lesion, astrocytoma vs. ependymoma, and 

MS vs. NMOSD, respectively. In a subset of radiologically difficult cases, an accuracy 

of 79-95% (AUC=0.78-0.97) was still obtained by the classifier. The established deep 

learning pipeline for segmentation and classification of spinal cord lesions can support 

an accurate radiological diagnosis. 

 

Keywords: spinal cord MRI; astrocytoma; ependymoma, multiple sclerosis; 

neuromyelitis optica spectrum disorder; deep learning.  



Introduction 

Intramedullary spinal cord tumors and inflammatory demyelinating lesions share 

several MRI characteristics (e.g., localization, shape, signal intensity and contrast 

enhancement) 1-3, posing a clinical challenge for accurate diagnosis. It is essential to 

accurately differentiate spinal cord tumors (including astrocytoma and ependymoma) 

from demyelinating lesions (including multiple sclerosis (MS) and neuromyelitis optica 

spectrum disorders (NMOSD)), as well as accurate classification of these subtypes, 

as this implies fundamentally different treatments and prognosis. 

 

Substantial progress has been made in applying deep learning (DL) to diagnosing 

brain disorders 4-6, but only a few DL studies have focused on spinal cord diseases 7, 

8. The limited evidence to date suggests that DL can be utilized to characterize and 

segment spinal cord tumors or demyelinating lesions 7, 8, but no study has addressed 

the differential diagnosis of spinal cord tumors and demyelinating lesions or their 

subtypes. While automated pipelines for clinical diagnosis integrating lesion 

segmentation and differential diagnosis by DL have been reported for supratentorial 

lesions (e.g., gliomas and white matter hyperintensities) 5, 6, 9, they have not yet been 

reported for intramedullary spinal cord lesions. 

 

We hypothesized that a DL pipeline for the accurate classification of intramedullary 

lesions, notably spinal cord tumors (astrocytoma and ependymoma) and inflammatory 

demyelinating lesions (MS and NMOSD), as well as their subtypes, could be achieved 



using MR images. Therefore, we conducted this study to validate the above hypothesis 

using T2-weighted (T2w) images. We deliberately chose basic T2w images as they are 

generally clinically available in most cases. 



Materials and Methods 

Authors who are not employees of or consultants for BioMind, Neusoft, Bayer-Schering, 

Biogen-Idec, GeNeuro, Ixico, Merck-Serono, Novartis or Roche had control of image 

and clinical data that might present a conflict of interest for authors ZH. L, XP. G, XD. 

G and F.B. 

 

The aim of this study was to develop a DL pipeline for assisting clinical diagnosis by 

integrating the segmentation and classification of spinal cord tumors versus 

demyelinating lesions and their subtypes (3 two-classification models including tumor 

vs. demyelinating lesion [Model 1], astrocytoma vs. ependymoma [Model 2], MS vs. 

NMOSD [Model 3]) based on sagittal T2w images (eTable 1 and eMethods) using 2D 

MultiResUNet 10, 11 and DenseNet121 networks 12. The code is available at 

https://github.com/Leezhaohui/spinalcord_classification. 

 

From Jan 2012 to Dec 2018, we retrospectively identified 494 patients based on their 

first clinical diagnosis and prior to their clinical treatments to train (n=392, 80%) and 

validate (n=98, 20%) the segmentation and classification models (Table 1, eMethods 

and eResults). For independent testing, 157 patients were prospectively and 

consecutively enrolled from Jan 2019 to Dec 2020 (Table 1, eMethods and eResults). 

Refer to Figure 1 and eMethods for inclusion and exclusion criteria. Radiological 

assessments, including lesion characteristics, manual lesion segmentation and 

classification, were performed by neuroradiologists (eMethods, eResults and eTable 



2) with reference to other available modalities (e.g., T1w, contrast-enhanced T1w 

(cT1w) and axial T2w images). Difficult cases were determined as those with 

disagreement in the most likely diagnoses by the neuroradiologists (eMethods). 

Details of image preparation for DL and model development can be found in eMethods. 

A pipeline including segmentation and classification of spinal cord lesions is shown in 

Figure 2A. The Dice score was used to evaluate segmentation performance (see 

eMethods for additional statistical analyses). Accuracy, sensitivity, specificity, positive 

predictive value (PPV), negative predictive value (NPV), precision, recall and area 

under the curve (AUC) were calculated to evaluate classification performance. 

Additionally, model explanations were conducted by gradient-weighted class activation 

mapping (Grad-CAM), subgroup analyses according to patient age and sex, and 

additional combinations with available cT1w images (eMethods). 

 

This study was in accordance with the Declaration of Helsinki and approved by the 

Animal and Human Ethics Committee of the local institute. 



Results 

DL segmentation of spinal cord tumors and demyelinating lesions 

In the independent test cohort, the mean Dice scores were 0.77, 0.80, 0.50 and 0.58 

for astrocytoma, ependymoma, MS and NMOSD, respectively (eTable 3 and Figure 

2B show representative cases). A subset of DL segmentations (7%-10% tumors and 

29%-33% demyelinating lesions) needed further manual review and correction (see 

eMethods and eResults). 

 

DL classification of spinal cord tumors and demyelinating lesions 

Based on Model 1, an accuracy of 96% (150/157), sensitivity of 97% (76/78), specificity 

of 94% (74/79) and AUC of 0.99 were achieved on the independent test cohort for the 

classification of tumor versus demyelination (additional statistics are found in Table 2, 

eFigure 1 and eFigure 2), which is comparable to the neuroradiologists’ performance 

(accuracy of 97% [152/157], eResults and eTable 2). An accuracy of 95% (38/40), 

sensitivity of 95% (21/22) and specificity of 94% (17/18) were achieved for the 

classification of difficult cases. 

 

Based on Model 2, an accuracy of 82% (65/79), sensitivity of 76% (34/45), specificity 

of 91% (31/34), and AUC of 0.90 were achieved on the independent test cohort for the 

classification of astrocytoma versus ependymoma, which is superior to the 

neuroradiologists’ performance (accuracy 72% [57/79]). This performance was 

maintained for difficult cases, where an accuracy of 83% (15/18), sensitivity of 86% 



(6/7) and specificity of 82% (9/11) were achieved. 

 

Based on Model 3, an accuracy of 79% (62/78), sensitivity of 80% (36/45), specificity 

of 79% (26/33) and AUC of 0.85 were achieved on the independent test cohort for the 

classification of MS and NMOSD lesions, which is superior to the neuroradiologists’ 

performance (accuracy of 67% [52/78]). This performance was maintained for difficult 

cases, where an accuracy of 82% (18/22), sensitivity of 87% (13/15) and specificity of 

71% (5/7) were achieved. 

 

Model explanation 

The Grad-CAM showed that the main activation areas were the lesion and perilesional 

areas in patients with tumors or demyelinating lesions (eResults and eTable 4). The 

model performance only degraded in the pediatric and male subgroups, with 

decreased sensitivity in the classification of astrocytoma versus ependymoma (eTable 

5). The cT1w images had no additional contribution to whole lesion segmentation and 

only improved the classification accuracy of MS versus NMOSD (eTable 6). 



Discussion 

In this study, a DL pipeline for spinal cord lesion segmentation and classification was 

first developed using the most widely available T2w images, with a manual 

verification/adjustment step for segmentation in up to 30% of cases. This pipeline could 

benefit patients without available cT1w images and facilitate fast clinical translation 

with robust performance across different subpopulations. For the differentiation of 

demyelinating lesions, cT1w imaging is recommended to achieve a better classification 

performance. 

 

Few studies have focused on spinal cord lesion segmentation by DL 8. Spinal cord 

tumor segmentation benefits from a relatively high tumor intensity compared to 

surrounding normal spinal cord tissue 13. Our DL model showed promising 

segmentation performance (Dice score>0.75) that is comparable to a previous report, 

where a Dice score of 0.77 was reported 8. For demyelinating lesions, DL segmentation 

achieved a slightly lower performance (Dice score≤0.6, even combining cT1w images) 

due to the smaller volume of disseminated lesions and lower contrast of the lesion and 

surrounding tissue 7, which also poses a challenge in manual delineation (mean Dice 

score<0.75). Although the current automatic segmentation of demyelinating lesions 

requires manual review and frequent modification (approximately 30%), it may still aid 

efficient lesion segmentation. 

 

The novelty of our study is the classification of spinal cord tumors and demyelinating 



lesions and their subtypes, a clinically relevant and sometimes challenging task, using 

DL. Our model showed an excellent differentiation (accuracy of 96%) of spinal cord 

tumors versus demyelinating lesions using only T2w images, which is comparable to 

that (mean accuracy of 97%) by neuroradiologists. Our model may benefit from the 

different intensity contrast and morphological characteristics (e.g., orientation, shape, 

size and count as shown in Grad-CAM) 14, 15. In addition, cysts, necrosis, cavities and 

hemorrhages, which are specific to tumors and typically absent in demyelinating 

lesions, may also contribute to the final classification 1, 14-16. Even though the 

differentiation of different brain tumors has been widely reported in previous studies 

with accuracies above 80% 5, 17, studies on the differentiation of spinal cord tumors are 

lacking. The differentiation within spinal cord tumors (accuracy of 82%) using DL in the 

current study was superior to neuroradiologists’ diagnostic performance (mean 

accuracy<0.75) and comparable to those in previous brain tumor studies 5, 17. An 

accuracy of 79% was achieved for the differentiation of demyelinating lesions (MS 

versus NMOSD) using DL; this performance could be further improved by combining 

cT1w images (accuracy of 90%, but resulted from a relatively small sample), higher 

than that by neuroradiologists (mean accuracy<0.7). The contribution of the entire 

demyelination lesion/lesion central area and perilesional areas along the lesion margin 

revealed by Grad-CAM indicated potential distinct underlying pathologies within the 

entire lesion/lesion central area and perilesional areas, which has potential value for 

radiological diagnosis (eTable 4). A good to excellent performance (accuracies from 

79% to 95%) was achieved using DL for clinically difficult cases (i.e., conflicting 



diagnoses from neuroradiologists), which offers a potential use in solving clinical 

problems of difficult spinal cord cases.  

 

There are some limitations in this study. First, only spinal cord T2w images were used 

in this study, and multimodal spinal cord MR and available brain MR images, which 

would provide complementary profiles, could be considered in further studies. Second, 

lesion segmentation by DL may have been suboptimal, particularly for demyelinating 

lesions. Additionally, the whole lesion on the T2w image was segmented, and different 

tumor components (e.g., cyst, edema and hemorrhage) may improve the classification 

model performance. Third, a prospective study with more types of spinal cord lesions 

(e.g., spinal cord infarction) and external validation is warranted to validate the 

established pipeline and extend the model to other spinal cord diseases. 



Conclusion 

A DL framework for the segmentation and classification of spinal cord lesions, including 

tumors (astrocytoma and ependymoma) and demyelinating diseases (MS and 

NMOSD), was developed and validated, with performance sometimes outperforming 

that of radiologists.  
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Tables 

Table 1. Demographics, clinical information and conventional MR features. 

 Training cohort Validation cohort Testing cohort 

 Astrocytoma 

n=94 

Ependymoma 

n=104 

MS 

n=81 

NMOSD 

n=113 

P 

value 

Astrocytoma 

n=24 

Ependymoma 

n=26 

MS 

n=20 

NMOSD 

n=28 

P 

value 

Astrocytoma 

n=34 

Ependymoma 

n=45 

MS 

n=33 

NMOSD 

n=45 

P 

value 

Female ratio, No. (%) 35 (37) 48 (46) 59 (73)12 94 (83)12 <.001a 10 (42) 13 (50) 12 (60) 25 (89)123 .004a 11 (32) 20 (44) 23 (70)12 40 (89)123 <.001a 

Age, mean (SD), years 31.54(16.48) 42.66(12.61)1 34.93(12.16)2 39.17(14.67)1 <.001c 33.33(14.36) 43.19(13.03)1 31.2(10.29)2 45.46(12.65)13 <.001c 31.94(14.27) 42.42(15.28)1 38.12(11.91) 42.31(13.35)1 .003c 

Lesion location                

Oblongata-cervical, No. (%) 0 (0) 0 (0) 6 (7)12 0 (0)3 <.001b 0 (0) 0 (0) 2 (10) 0 (0) .04b 0 (0) 0 (0) 4 (12)12 0 (0)3 .002b 

Cervical, No. (%) 33 (35) 68 (65)1 61 (75)1 75 (66)1 <.001a 13 (54) 16 (62) 13 (65) 17 (61) .91a 10 (29) 29 (64)1 24 (73)1 29 (64)1 .001a 

Cervical-thoracic, No. (%) 15 (16) 1 (1)1 11 (14)2 19 (17)2 <.001a 5 (21) 0 (0) 3 (15) 6 (21) .049b 4 (12) 0 (0) 5 (15) 5 (11) .97b 

Thoracic, No. (%) 31 (33) 20 (19)1 3 (4)12 17 (15)13 <.001a 5 (21) 1 (4) 2 (10) 5 (18) .26b 15 (44) 4 (9)1 0 (0)1 11 (24)123 <.001a 

Thoracic-lumbar, No. (%) 14 (15) 0 (0)1 0 (0)1 2 (2)1 <.001a 1 (4) 0 (0) 0 (0) 0 (0) .99b 5 (15) 1 (2)1 0 (0)1 0 (0)1 .004b 

Lumbar, No. (%) 1 (1) 15 (14)1 0 (0)2 0 (0)2 <.001b 0 (0) 9 (35)1 0 (0)2 0 (0)2 .008b 0 (0) 11 (24)1 0 (0)2 0 (0)2 <.001b 

Lesion count, median IQR) 1 (1,1) 1 (1,1) 2 (1,3)12 1 (1,2)123 <.001d 1 (1,1) 1 (1,1) 2 (1,3.5)12 1 (1,1)3 <.001d 1 (1,1) 1 (1,1) 2 (1,4)12 1 (1,1)3 <.001d 

Lesion-associated extension, 4 (3,6) 3 (2,4)1 3 (2,5)1 4 (2.5,6)23 <.001d 4 (3,6) 2 (1.5,3)1 3 (2,5) 4 (2,7)2 .003d 4 (2,6) 2 (2,4)1 3 (2,5) 3 (2,5)2 .008d 



median (IQR), vertebra count 

Total lesion volume, mean 

(SD), ml 

12.64(10.77) 15.08(11.71) 1.32(1.64)12 2.99(2.95)12 <.001c 11.61(11.66) 10.55(7.65) 8.04(0.63)12 2.73(2.14)12 <.001c 15.05(12.26) 15.30(10.05) 0.99(1.18)12 2.31(2.41)12 <.001c 

Contrast enhanced lesion, 

NO./total case NO. (%) 

60/79 (76) 71/99 (72) 7/54 (13)12 10/61 (16)12 <.001a 18/22 (82) 19/24 (79) 0/15 (0) 12 4/16 (25) 12 <.001a 24/29 (83) 33/42 (79) 2/21 (10) 12 6/30 (20) 12 <.001a 

Note: MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorders; ANOVA, analysis of variance; n, number; SD, standard deviation; 

IQR, interquartile range; cT1w, contrast-enhanced T1w; The samples in the training cohort were appropriate for model development (e.g., model 

overfitting was prevented), as indicated by the model performance evaluation with different training sample sizes (eFigure 3). 

a Pearson’s Chi-squared test between groups. 

b Fisher's exact test between groups 

c ANOVA followed by post hoc multiple comparison with Bonferroni correction. 

d Kruskal–Wallis test followed by post hoc multiple comparison with Bonferroni correction. 

1 Statistically significant compared to astrocytoma. 

2 Statistically significant compared to ependymoma. 



Table 2. The differentiation of spinal cord lesions by DL models. 

Classification Tumor vs. 

Demyelinating 

lesion (Model 1) 

Astrocytoma vs. 

Ependymoma 

(Model 2) 

MS vs. 

NMOSD 

(Model 3) 

Validation    

Accuracy (%) 96 (94/98) 80 (40/50) 88 (42/48) 

Sensitivity (%) 98 (47/48) 77 (20/26) 86 (24/28) 

Specificity (%) 94 (47/50) 83 (20/24) 90 (18/20) 

PPV (%) 94 (47/50) 83 (20/24) 92 (24/26) 

NPV (%) 98 (47/48) 77 (20/26) 82 (18/22) 

Precision (%) 94 (47/50) 83 (20/24) 92 (24/26) 

Recall (%) 98 (47/48) 77 (20/26) 86 (24/28) 

AUC 0.99 0.85 0.94 

Testing    

Accuracy (%) 96 (150/157) 82 (65/79) 79 (62/78) 

Sensitivity (%) 97 (76/78) 76 (34/45) 80 (36/45) 

Specificity (%) 94 (74/79) 91 (31/34) 79 (26/33) 

PPV (%) 94 (76/81) 92 (34/37) 84 (36/43) 

NPV (%) 97 (74/76) 74 (31/42) 74 (26/35) 

Precision (%) 94 (76/81) 92 (34/37) 84 (36/43) 

Recall (%) 97 (76/78) 76 (34/45) 80 (36/45) 

AUC 0.99 0.90 0.85 

Difficult cases    

Accuracy (%) 95 (38/40) 83 (15/18) 82 (18/22) 

Sensitivity (%) 95 (21/22) 86 (6/7) 87 (13/15) 

Specificity (%) 94 (17/18) 82 (9/11) 71 (5/7) 

PPV (%) 95 (21/22) 75 (6/8) 87 (13/15) 

NPV (%) 94 (17/18) 90 (9/10) 71 (5/7) 

Precision (%) 95 (21/22) 75 (6/8) 87 (13/15) 

Recall (%) 95 (21/22) 86 (6/7) 87 (13/15) 

AUC 0.97 0.91 0.78 

Note: MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorders; DL, 

deep learning; PPV, positive predictive value; NPV; negative predictive value; AUC, 

area under the curve.



Figure legends 

Figure 1. A flowchart of the patient selection. MS, multiple sclerosis; NMOSD, neuromyelitis 

optica spectrum disorders. 

 

Figure 2. A: A DL pipeline established for segmentation and classification of spinal cord 

lesions. First, the T2w images (all slices, e.g., slices 1-11) were used to segment the lesion, 

and a manual interaction was conducted to correct the poorly segmented lesions. Then, 

the slices (e.g., slices 5-8) of T2w images and lesion masks involving lesions were used 

as the network input for classification tasks. B: Representative cases of segmentation and 

classification for spinal cord tumors and demyelinating lesions in the test cohort. Diagnosis 

by DL and four raters (D. C, X. X, C.F and X.H) are also presented. Red areas indicate the 

deep learning segmentation. DL, deep learning; MS, multiple sclerosis; NMOSD, 

neuromyelitis optica spectrum disorders. 

 


